[ad_1]

Group

image: The University of Oklahoma has received funding from the National Institutes of Health to establish the Oklahoma Center of Medical Imaging for Translational Cancer Research. Bin Zheng (center) is the principal investigator with researchers (left to right) Stefan Wilhelm, Han Yuan, Hong Liu and Yuchen Qiu
view more 

Credit: Image provided by the University of Oklahoma, Gallogly College of Engineering.

The University of Oklahoma has received funding from the National Institutes of Health to establish the Oklahoma Center of Medical Imaging for Translational Cancer Research, a collaboration between the Gallogly College of Engineering on the OU Norman campus and OU Health Stephenson Cancer Center in Oklahoma City.

“Great scientific advancements are best achieved through multidisciplinary collaboration, which is exactly what will be accomplished at the Oklahoma Center of Medical Imaging for Translational Cancer Research,” said OU President Joseph Harroz Jr. “This exciting effort unites some of the brightest minds from across two of our campuses, who will combine their expertise to develop life-changing solutions. Their work is a prime example of how OU researchers are reaching beyond traditional boundaries to spark new discoveries with real-world impacts.”

The award from the Centers of Biomedical Research Excellence (COBRE) program of the NIH is expected to provide more than $11.3 million over a five-year Phase 1 period, with the opportunity to compete for renewal for up to three phases. The first phase supports the center’s establishment to galvanize multidisciplinary biomedical research through equipment and facilities support to junior faculty. This is the second COBRE center on OU’s Norman campus, joining the Oklahoma COBRE in Structural Biology.

Bin Zheng, Ph.D., a professor and Oklahoma TSET Cancer Research Scholar in the Gallogly College of Engineering’s School of Electrical and Computer Engineering, is leading the new center.

About the Oklahoma Center of Medical Imaging for Translational Cancer Research

Medical imaging is an essential tool to help doctors and scientists assess the size and scope of a tumor that will be effectively removed by surgery, as well as the rate at which tumors shrink in response to medical interventions such as chemotherapy or radiation therapy. OU researchers are investigating multiple avenues to help improve medical imaging use in cancer detection, diagnosis and treatment.

“Radiological imaging tries to detect a tumor or disease area, while pathologic imaging tries to confirm whether it is benign or malignant,” Zheng said. “While there are other kinds of testing methods, like blood testing, imaging is the most commonly used by clinicians.”

“The problem is that reading medical images by radiologists is quite difficult because tumors, cancer and most diseases are very heterogenous – there is a lot a variation,” he added. “We often see different image diagnostic results from different clinicians or different hospitals because of the large inter-reader variability. This can result in applying different treatment options and potentially reduce treatment efficacy.”

To counter this challenge, the center’s researchers are developing quantitative imaging markers to provide an objective measure or index that can reduce subjectivity and improve consistency for medical image diagnosis using two primary types of research approaches.

The first approach is to develop new investigative cutting-edge imaging modalities to expand ability of doctors to see or detect more detailed tumor internal structures such as using the advanced optical imaging modalities and technology.

The second is to explore and extract more effective image features from the existing clinical imaging modalities – like CT, MRI and X-ray images – and then using artificial intelligence or machine learning models to develop new quantitative imaging markers to help reduce subjectivity and variability of cancer diagnosis and predicting cancer prognosis.

“When some patients undergo cancer treatments, some will respond favorably while others do not. The tumor continues to grow, so if we can develop a quantitative imaging marker to predict a patient’s likelihood to respond to a certain kind of chemotherapy or treatment, we can help physicians explore an alternative approach that may be more effective,” Zheng said.

In each year of Phase 1 of the NIH COBRE program, the center will support two new pilot research projects that can help junior faculty test theories and gain experience before going on to lead independent high-impact research.

The center is beginning with four projects currently underway. Three projects are led by faculty in the Gallogly College of Engineering and one by a clinician scientist at the Stephenson Cancer Center. All four projects will include close collaboration between engineering researchers from the OU Norman campus and clinician scientists from the OU Health Sciences Center campus to promote interdisciplinary and translational cancer research. Learn more about these projects at ou.edu/research

###

About the Project

This research is supported by funding from the Centers of Biomedical Research Excellence (COBRE) program of the National Institutes of Health, Grant No 1P20GM135009-01A1. Bin Zheng is the principal investigator and director of the of Oklahoma Center of Medical Imaging for Translational Cancer Research.

About the University of Oklahoma

Founded in 1890, the University of Oklahoma is a public research university located in Norman, Oklahoma. OU serves the educational, cultural, economic and health care needs of the state, region and nation. For more information visit www.ou.edu.

About OU Research and Partnerships 

The University of Oklahoma is a leading research university classified by the Carnegie Foundation in the highest tier of research universities in the nation. Faculty, staff and students at OU are tackling global challenges and accelerating the delivery of practical solutions that impact society in direct and tangible ways through research and creative activities. OU researchers expand foundational knowledge while moving beyond traditional academic boundaries, collaborating across disciplines and globally with other research institutions as well as decision makers and practitioners from industry, government and civil society to create and apply solutions for a better world. Find out more at ou.edu/research.

OU Health Stephenson Cancer Center 
OU Health Stephenson Cancer Center is Oklahoma’s only National Cancer Institute-Designated Cancer Center. It was named Oklahoma’s top facility for cancer care by U.S. News & World Report in its 2020-21 rankings. Stephenson Cancer Center is one of the nation’s elite centers, representing the top 2% of cancer centers in the country. It is the largest and most comprehensive oncology practice in the state, delivering patient-centered, multidisciplinary care for every type of cancer. As one of the nation’s leading research organizations, Stephenson Cancer Center uses the latest innovations to fight and eliminate cancer, and is currently ranked No. 1 among all cancer centers in the nation for the number of patients participating in clinical trials sponsored by the NCI’s National Clinical Trials Network. For more information, visit stephensoncancercenter.org.


Disclaimer: AAAS and EurekAlert! are not responsible for the accuracy of news releases posted to EurekAlert! by contributing institutions or for the use of any information through the EurekAlert system.

[ad_2]

Source link